[7.6] Molarity and Titrations

Hebden Textbook: pg. 129 - 131

What if we don't know the concentration of a solution?

•To determine the **molarity** of a concentration (浓度) by stoichiometry, one

common application is by the method called **titration**.

What if we don't know the concentration of a solution?

<u>Note</u>: When we deal with liquid volume, we <u>cannot</u> use
<u>22.4L/mol</u>. This conversion factor is used <u>only</u> for <u>gases</u> at STP.

 <u>Remember</u>: When you see a chemical formula written in square brackets (example: [H₂SO₄]) This means that it is the molar concentration (units mol/L)

Titration

- **Titration**: A process used to determine the **concentration** of a solution.
- Titrations are used to find the **unknown** concentration of a chemical in a solution.
- The known solution is called the standard solution. It is in the burette (the long tube). The solution in the flask has an unknown concentration, it is called the sample

• The solutions react until the **equivalence point.** is reached. At this point, the moles of the **standard** solution **equals** the moles of the **unknown** solution, using a **ration in the given equation.**

• Eg. $H_2SO_4 + 2 \text{ NaOH} \rightarrow \text{Na}_2SO_4 + H_2O$

- The equivalence point is the point when exactly 1 mole of H_2SO_4 has reacted for every 2 moles of NaOH.
- The equivalence point is shown by a color change
- The color change is caused by an **indicator** that is in the sample solution.

Indicators

Indicators are based on the pH scale

Phenolphthalein

Bromothymol Blue

Bromothymol blue

 0	6		 8		14
Phenolphthalein					
0		7	9	ŕ	14

Titration Calculations

• Basically, this type of problem is a stoichiometry question in which you must use molarity at the beginning and the end of the question.

• The 3-Steps To Solve the Problem:

<u>Step 1:</u> Units given in the question \rightarrow Mole

<u>Step 2:</u> Mole Ratio (between the given and unknown)

<u>Step 3:</u> Mole of Unknown \rightarrow molar concentration (浓度) of Unknown

A 10.00 mL sample of H₂SO₄ is titrated (This means it is located in the flask) with 15.55 mL of a 0.1000 M NaOH solution (The standard is always located in the burette). What is the [H₂SO₄] ? (Remember: Square brackets means you are asked to find the molar concentration, mol/L)

	Concentration	Volume
Sample Solution		
Standard Solution		
Mole Ratio at the Equivalence Point		

$H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$

A 10.00 mL sample of H₂SO₄ is titrated (This means it is located in the flask) with 15.55 mL of a 0.1000 M NaOH solution (The standard is always located in the burette). What is the [H₂SO₄] ? (Remember: Square brackets means you are asked to find the molar concentration, mol/L)

	Concentration	Volume
Sample Solution		0.01000 L
Standard Solution	0.1000 M	0.01555 L
Mole Ratio at the Equivalence Point		

$H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$

Solve using this equation:

- **1.** $M_1V_1 = M_2V_2$
- 2. $(0.1000 \text{ mol NaOH/L})(0.01555L) = M_2(0.01000L)$
- *We are solving for the molarity of H₂SO₄ so we need to convert the moles of NaOH to moles of H₂SO₄.

4.
$$\frac{1 \text{ mol } H_2 SO_4}{2 \text{ mol } NaOH}$$
 (0.1000 mol NaOH/L)(0.01555L) = M₂(0.01000L)

5. 7.775 x 10^{-1} M H₂SO₄ = M₂

A 10.00 mL sample of H₂SO₄ is titrated (This means it is located in the flask) with 15.55 mL of a 0.1000 M NaOH solution (The standard is always located in the burette). What is the [H₂SO₄] ? (Remember: Square brackets means you are asked to find the molar concentration, mol/L)

	Concentration	Volume
Sample Solution	7.775 x 10 ⁻¹ M H ₂ SO ₄	0.01000 L
Standard Solution	0.1000 M	0.01555 L
Mole Ratio at the Equivalence Point	1:2	

$H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$

A solution of HCl of unknown concentration was titrated with 0.150 M Ba(OH)₂. The equivalence point is reached when 14.83 mL of Ba(OH)₂ is added to 50.00 mL of the HCl solution. Find the [HCl] in the original sample.

$2HCI + Ba(OH)_2 \rightarrow 2H_2O + BaCl_2$

$2HCI + Ba(OH)_2 \rightarrow 2H_2O + BaCl_2$

$2HCI + Ba(OH)_2 \rightarrow 2H_2O + BaCl_2$

- **1.** $M_1V_1 = M_2V_2$
- 2. $(0.150 \text{ mol Ba}(OH)_2/L)(0.01483L) = M_2(0.05000L)$
- *We are solving for the molarity of HCl so we need to convert the moles of Ba(OH)₂ to moles of HCl.

4. $\frac{2 \text{ mol HCl}}{1 \text{ mol Ba}(OH)_2} (0.150 \text{ mol Ba}(OH)_2/L)(0.01483L) = M_2(0.05000L)$

5. 8.90 x 10^{-2} M HCl = M₂

Classwork 1:

• A student titrates a 20.00 mL sample of a solution of HBr with unknown molarity according to the following reaction:

$HBr + NaOH \rightarrow NaBr + H_2O$

• The titration requires 20.05 mL of a 0.1819 M solution of NaOH. What is the molarity of the HBr solution?

Classwork 1:

HBr + NaOH \rightarrow NaBr + H₂O

- 1. $M_1V_1 = M_2V_2$
- 2. $(0.1819 \text{ mol NaOH/L})(0.02005L) = M_2(0.02000L \text{ HBr})$ 4. $\begin{pmatrix} 1 \text{ mol HBr} \\ 1 \text{ mol NaOH} \end{pmatrix}$ (0.1819 mol NaOH/L)(0.02005L) = M_2(0.02000L \text{ HBr})
- 5. 1.82 x 10^{-1} M HBr = M₂

Classwork 2:

$H_3PO_4(aq) + 3KOH(aq) \rightarrow K_3PO_4(aq) + 3H_2O(l)$

- a) If 19.8 ml of H₃PO₄ with an unknown molarity reacts with 25.0 ml of 0.500M KOH, what is the molarity of the H₃PO₄?
- b) What volume of 0.200M KOH is required to react with 125 ml of 0.250 M H_3PO_4 in order to reach the equivalence point?

Classwork 2:

$H_3PO_4(aq) + 3KOH(aq) \rightarrow K_3PO_4(aq) + 3H_2O(l)$

a) If 19.8 ml of H₃PO₄ with an unknown molarity reacts with 25.0 ml of 0.500M KOH, what is the molarity of the H₃PO₄?

$HBr + NaOH \rightarrow NaBr + H_2O$

- 1. $M_1V_1 = M_2V_2$
- 2. $(0.500 \text{ mol KOH/L})(0.0250L) = M_2(0.0198 H_3PO_4)$
- 3. $(1 \text{ mol H}_3\text{PO}_4/3 \text{ mol KOH})(0.500 \text{ mol KOH/L})(0.0250L) = M_2(0.0198 \text{ H}_3\text{PO}_4)$
- 4. 0.210 M $H_3PO_4 = M_2$

HOMEWORK

Textbook: Hebden Page: 131 Questions: 17 - 23

Hebden: CHEMISTRY 11 A WORKBOOK FOR STUDENTS

